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CHAPTER VIII  DISLOCATION KINETICS 
     
 

 
 
Until now, we have considered dislocations as sources of internal stresses, and their motion results in 

plastic deformation without focusing on their contribution to plasticity. However, it is clear that 

plastic deformation results from the displacement of dislocations. Moreover, dislocations encounter 

and interact with different obstacles when moving within a crystal, e.g., crystal lattice, other 

dislocations, impurities, and other defects that oppose their motion. 

 

Chapter VIII first aims to clarify how the dislocation motion induces plastic deformation and then 

discusses and analyzes the mechanisms by which obstacles impede dislocation motion. 
 

8.1 Relation between shear and macroscopic deformation 
 

We have seen in Chapter VI that the displacement of a dislocation line in a crystal sample introduces 

a deformation, which we described with the Orowan equation: 

 

  
 

The uniaxial tensile (or compressive) test is the most common strain test used, where the strain ε is 

defined by: 

  
 

where dL is the total variation in the length of the sample, and L is its initial length for small plastic 

deformation. By considering the geometry of the deformation, shear is given by (see Figure 8-1): 

 

  
 

and the corresponding strain of the sample is proportional to the following: 

 

  
 

Finally: 

  
 

The Schmid factor m is the same as described in Chapter VI for stresses (6.1). This equation 

quantitatively relates the microscopic strain associated with crystal slip and the Burgers vector to the 

macroscopic strain.  
 

 

(8.1) 
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Figure 8-1: Relation between γ and ε 

 

 

Remarks: 

 

• Equivalent expressions exist if the displacement of the dislocation occurs by climb motion. 

• We can also see in Figure 8-1 that the translation of the load axis accompanies plastic strain. In the 

case of a monocrystalline sample, for instance, if the two ends were held rigidly, this would produce 

a lattice rotation, possibly leading to a non-homogeneous strain. 

 

 

 

8.2 Strain curve 
 

We just saw how the displacement of a dislocation induces a deformation, which can be directly 

related to a macroscopic "measurable" strain. This displacement can be either reversible or 

irreversible. Moreover, a dislocation can spontaneously create other dislocations by moving across 

the crystal (e.g., Frank-Read sources). Studying these phenomena involves creating consecutive 

loading and unloading cycles and measuring the corresponding strains. From this empirical 

knowledge, we can then identify the different behaviors of dislocations under the action of an external 

load on a stress-strain curve (Figure 8-2).
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Figure 8-2: Analysis of a stress-strain curve by repetition of loading-unloading cycles 

 

Following Brown's terminology, we can identify three kinds of "elastic limits," each corresponding 

to different dislocation behavior: 

 

• In a purely elastic domain, σ < σy, no motion of dislocations occurs. 

• An anelastic domain, σy < σ < σa, arises from dislocations bent between their anchor points 

under stress, restoring their initial position during unloading. That is, this domain corresponds 

to the reversible motion of dislocations. The phenomena related to anelasticity are described in 

more detail in chapter X. 

• In a microplastic domain, σa < σ < σp, dislocations move over longer distances and can run into 

obstacles on which they are pinned. Some dislocations' motion is no longer irreversible, and a 

plastic residual strain is permanent after unloading. For a dislocation density of ρ ~ 109 m/m3, 

this domain can start from a strain ε ≈ 10-6, that is to say, for a mean free path of the size of the 

Frank network, up to a strain of ε ~10-3, that is to say for a distance traveled of the size of a 

monocrystal sample (~cm). 

• Lastly, in a plastic domain, σ > σp, dislocations move and multiply. It differs from the previous 

domain in the number and the nature of the mobile dislocations. Furthermore, the multiplication 

of dislocations requires that all types of dislocations be mobile; this was not obvious in the case 

where . 
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These deformation characteristics and dislocation behavior often correspond to a gradual elastoplastic 

transition and the difficulty of precisely defining where the plastic domain begins. This is why we 

frequently define a conventional limit, the engineering yield stress, at which the stress-strain curve is 

at an arbitrary distance (0.2%) from the tangent to the origin. 

 

Despite being useful in practice, we must emphasize that 

this definition has little physical sense and can lead to 

significant mistakes. 

 

Other, more physical methods exist to define σp, for 

example, by following the evolution of specific physical 

parameters directly related to the mobility of dislocations 

as functions of stress (or strain). 

 

We observe, nevertheless, that the stress varies as a 

function of the strain. Therefore, it is interesting to study 

the parameters acting upon the displacement velocity of 

dislocations.  

 

 

Figure 8-3: Elastic limit (yield stress) 

 

We can distinguish four kinds of interactions that can influence the dynamics of dislocations. 

 

i) Interactions with the crystal lattice. The dislocation tends to rearrange along specific 

crystallographic directions. The dislocation must overcome the "friction" of the lattice to move, which 

can be described as a periodic potential, which must be overcome during its motion. This interaction 

is dominant at low temperatures. 

ii) Interactions with other dislocations. We have seen in Chapter VII that dislocations can interact 

between them with forces, which can limit their motion. 

iii) Interaction with point defects. Every point defect creates an elastic deformation of the lattice, 

which can interact with dislocations. On the other hand, the motion of dislocations can cause the 

displacement of point defects (dragging). The interaction of types ii) and iii) is observed as soon as 

diffusion and self-diffusion are activated. 

iv) Interaction with extended obstacles: precipitates, grain boundaries. Often, overcoming these 

obstacles requires significant thermal activation. It is a high-temperature phenomenon. 

v) Irradiation. We have seen in the electromagnetic analogy that the presence of a dislocation in the 

elastic medium is analog to the presence of current in space. We can go one step further with this 

analogy by showing that a dislocation can be subject to relativistic effects, with a "mass" that becomes 

infinite at the speed of sound (its upper-velocity limit). On the other hand, if a dislocation is 

accelerated, it radiates photons similarly to an electric charge emitting electromagnetic waves. In the 

same way, it can also absorb photons, just like a charge in the Compton effect. All these effects can 

be observed during the excitation by vibration beyond 100 MHz or during ballistic impacts. However, 

their study is beyond our course objectives. Interested readers can refer to Hirth J. P. and Lothe J.'s 

"Theory of dislocations" for further details.
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8.3  Interactions of dislocations with the crystal lattice 
 

When a dislocation moves by an interatomic distance within a crystal, the atomic arrangement of 

atoms A, B, and C in the core region varies during the displacement between stable positions (Figure 

8-4 a and c). However, the configuration necessarily has a local maximum (Figure 8-4 b). 

Figure 8-4: Propagation of a dislocation regulated by the crystal lattice 

 

This variation of core energy W(x) generates resistance to dislocation glide, called lattice friction or 

Peierls-Nabarro force. In the presence of a stress σ, the variation in the free energy of the dislocation 

(see Chapter IX for a justification of the following formula (8.2)) is modified during its motion 

(Figure 8-5). 

 
  

The stable positions of W(x) in the absence of stress (Figure 8-4a) become metastable positions in 

the presence of a stress σ (Figure 8-4c). The Peierls-Nabarro stress is the minimum value of σ (at the 

temperature T=0 K) for which no metastable position (such as S) exists:  

 

  
 

Following Figure 8-5, we take as potential W(x): 

  

  

Figure 8-5: Effect of the applied stress on the potential of the dislocation

(8.2) 
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We can then derive by considering the points with the horizontal tangent of the potential W(x): 

 

                                      and thus:                        

  

where and are the dislocation line tension in the unstable and stable positions, respectively. α 

is a parameter that depends on the shape of W(x): α = 2 if for a linear variation, α = π for a sinusoidal 

function, such as the one considered here, and α = 4 for a parabolic function. 

 

It is clear that this lattice friction only affects the dislocations that are parallel to the close-packed 

directions. If the direction of a straight dislocation is different, the average value of the core energy 

W(x) changes little during the displacement. 

Figure 8-6: Kinks 

 

Nevertheless, for energy reasons, such dislocations do not remain straight. Instead, they assume a 

zig-zag shape, which enables segments of the dislocation line to lie on the dense atomic valleys of 

the glide plane, lowering their core energy (Figure 8-6). In addition, these segments are linked by 

kinks of higher energy, in which the lattice friction is generally lower so that they can easily move 

unless they follow themselves along a close-packed crystallographic direction. 

 

When T≠0 K, the value for the stress σ0 decreases as long as some coherent atomic fluctuations along 

the dislocation line (due to thermal agitation) favor the formation of kink pairs (Figure 8-7). Their 

slow dislocation velocities due to the lattice friction force is a measurable phenomenon at low 

temperatures. At low-stress values, the formation energy of a pair of kinks, as represented in Figure 

8-7, corresponds to one of two already well-formed kinks that the interaction is neglected. 

Figure 8-7: Kink pair

(8.3) 
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For aluminum, with μb3 ~ 1.3 eV, we get the energy of 0.12 eV for a Peierls stress on the order of 

magnitude of μ/1000. 

 

To summarize, only dislocations parallel to the close-packed lines show significant lattice friction, 

and the propagation stress increases with temperature because of thermal activation. 

 

 

8.4 Propagation controlled by the interaction with other dislocations 
 

When the lattice friction is weak, the elastic limit of pure metals is controlled by the interaction 

between dislocations. These interactions are usually classified into two categories: 

 

• Long-distance interactions with the Frank network, which do not cut the glide plane of the mobile 

dislocation 

• Short-distance interactions with the dislocations that cross the glide plane of the mobile dislocation 

and to which it directly interacts by forming junctions, jogs, etc. Nevertheless, the dislocations 

moving through a glide plane containing the mobile dislocation can also cause long-range stress 

fields, but in the next derivations, we neglect these interactions. 

 

8.4.1 Long-distance stresses due to the Frank network 

 

The dislocations that do not cut the glide plane of the mobile dislocation induce stresses on the glide 

plane of the mobile dislocation by their stress field. If we consider a certain number of fixed 

dislocations at an average distance l (l being the step of the Frank network) and with Burgers vector 

and , distributed randomly in planes approximatively parallel to the glide plane of the mobile 

dislocation, the stresses in the glide plane oscillate around a zero mean value with an amplitude 

and a two-dimensional wavelength of the order of l.  

Figure 8-8: Mobile dislocation in a Frank network with alternating Burgers vectors
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In such a configuration, is alternatively positive and negative, according to the sign of the Burgers 

vector (same or opposite sign of the dislocations in the vertical position, see § 7.5.2.c). 

The dislocation takes a sinusoidal shape (Figure 8-8). However, for dislocations to move, they must 

cross regions where is maximum. Therefore, the gliding only occurs when the stress applied is 

sufficient to move the dislocation from position A to position B through the maximum stress 

(Figure 8-8). The value of can be estimated by calculating the stress applied on a mobile 

dislocation by two other identical fixed and parallel dislocations placed roughly symmetrically from 

one side and the other of the glide plane. Figure 8-9 shows the mobile dislocation located at the origin. 

We note in equation (7.33) that the stress applied by a mobile edge dislocation in the glide plane by 

a fixed dislocation is given by: 

 

  
 

In the current case, the configuration is inverted, and we have two dislocations. The stress is then: 

 

 
 

That is, with r = y / sinθ: 

 

 
 

which has a maximum for θ=π/8, relatively far from 

the two fixed dislocations. This indicates that the 

position of the mobile dislocation is determined by y 

and that it does not have a significant influence, while 

in fact, only the distance l, which separates the two 

fixed dislocations, matters. 

 

 

 

 
Figure 8-9: Dislocation crossing a plane of two fixed dislocations 

 

We can then consider a first approximation for the value of (absolute value), which is given by 

and thus: 

  

from which  

that is - letting Y=y/l: 
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and we can thus consider for (Figure 8-10): 

  

Figure 8-10: Interaction stress between the overlapped dislocations 

 

In fact, from or , the stress  steeply becomes large, and the dislocation cannot pass,  

meaning that the force is high if one of the dislocations is close to the plane of the mobile dislocation 

and low if y is close to l/2 (Y=1/2). 

 

 

8.4.2 Short-distance interactions 

 

Short-distance interactions occur with dislocations that cut the glide plane of the mobile dislocation, 

with which this can interact. Three possible types of interactions exist. First, the dislocations cutting 

the glide plane are referred to as the "trees" of the forest, which can be either attractive or repulsive 

or without elastic interactions with the mobile dislocation. However, regardless of the type of 

situation, the final configuration generally requires the formation of two jogs (Figure 8-11), one on 

the mobile dislocation and the other on the tree (each one of the jogs corresponds respectively to the 

Burgers vectors of the intersected dislocation). Their formation requires some energy reaching to a 

stress σ, which we can initially neglect for attractive and repulsive trees, but not for trees without 

elastic interaction, where this energy becomes then dominating. 

Figure 8-11: Dislocation jogs formed during an intersection
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a)  The intersection of edge dislocations with 

perpendicular Burgers vectors 

 

A dislocation XY with Burgers vector moves in the plane 

PXY and cuts the dislocation AB with Burgers vector . Since 

the atoms on one side of the PXY plane are displaced by an 

atomic row with respect to the atoms lying on the other side 

when XY crosses the intersection, a jog PP' is created on the 

dislocation AB. 

 

The jog maintains the Burgers vector of AB , which has a 

length . Therefore, we cannot form a jog on dislocation XY 

because is parallel to XY.  

 

Since the energy per unit length of a dislocation is 

approximatively equal to αμb2, the energy of the jog is roughly 

equivalent to αμb3. 

 

 

 
Figure 8-12: Intersection between two edge dislocations with perpendicular Burgers vectors 

 

 

 

b) Intersection of edge dislocations with parallel Burgers vectors 

 

 

 

The intersection of two edge dislocations with parallel Burgers 

vectors is shown in Figure 8-13. Again, a jog in each dislocation 

is formed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8-13: Intersection of two edge dislocations with parallel Burgers vectors
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c) Intersection of an edge dislocation with a screw 

dislocation 

 

The arrangement of atomic planes in the crystal near the 

screw dislocation is shaped like a spiral. 

 

After crossing the screw dislocation, the ends of the edge 

dislocation are not in the same plane anymore: the 

dislocation forms then a jog parallel to the screw 

dislocation. On the other hand, as in the previous cases, 

the edge dislocation creates a jog on the screw dislocation.  

 

 

 

 

 

 

 

 

 

 
Figure 8-14: Intersection of an edge dislocation with a screw dislocation 

 

d)  Attractive tree 

 

A tree with Burgers vector is called attractive 

when a mobile dislocation with Burgers vector  

reacts with it to form a dislocation with Burgers 

vector , which is the sum of the Burgers 

vectors such that . 

In this case, the two dislocations combine over 

some length MN starting at the intersection of the 

two respective planes of the two dislocations so 

that the line energy is decreased (Figure 8-15). 

 

 

 

 

e) Repulsive tree 

 

If the dislocations stayed straight, the stresses required to cut a "repulsive" or "attractive" tree would 

be the same. However, the rearrangements at the intersection of the two dislocations increase the 

interaction energy of the "attractive" trees and decrease the interaction energy of the repulsive trees 

to stabilize the system. However, the repulsive trees cause less significant hardening; thus, we don't 

provide further explanation in this Chapter's context. 

 

Figure 8-15 : Formation of a common segment MN  during the interaction with an attractive tree 
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8.5 Propagation controlled by the interaction with a solid solution 
 

The mechanical properties of metals are generally modified by alloying elements producing atomic-

level defects, e.g., substitutional or interstitial-type. Alloying solute elements typically make the 

material harder, indicating that they obstruct dislocation motion. The interactions can differ according 

to the nature of these alloy elements. However, it is still possible to find one general formulation for 

hardening based on determining an obstacle's force coupled with a statistical method. 

 

The following presents different possible interactions between the dislocations and these impurities. 

We assume at first that they are fixed, i.e., the temperature is sufficiently low so that diffusion is 

negligible. 

 

 

8.5.1 Types of interaction between dislocations and atoms of the solute 

 

a) Size effect 

 

 

In the case of an impurity with a spherical symmetry, it 

can be considered that its introduction in the crystal 

lattice causes a volume change. The associated stress 

tensor is then equivalent to hydrostatic pressure.  

 

We have seen (Chapter III) that any stress state can be 

split into its shear components (the trace of the tensor is 

zero) and a hydrostatic pressure component, which acts 

on the volume change, that is: 

  

   
 

 

 
Figure 8-16: Interaction geometry of a point defect with a dislocation 

 

Thus, a straight edge dislocation applies at the point (r, θ) a hydrostatic pressure on the impurity (see 

equation (7.14)): 

  
 

As a consequence, neglecting the internal energy of the impurity and inserting a spherical impurity 

of volume ’Ω=Ω+ηΩ in a cavity with a volume equal to an atomic volume Ω, energy must be applied 

against the stress field of the dislocation to displace it from infinity to a position r with respect to the 

dislocation: 

  
 

which constitutes the energy of the interaction with the dislocation. This energy is supplied by the 

dislocation (the system). If it is positive, the system's energy decreases; if it is negative, the energy of 

the system increases. 

(8.4) 

(8.5) 
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If η < 0 (solute is smaller than solvent atoms), the impurity goes preferentially in the compressed 

zone (= zone of the extra half-plane) of the dislocation. If η > 0 (solute bigger), it tends to migrate to 

the dilatation zone. 

 

The maximum interaction energy (it is binding energy, which is thus negative) is given for θ = π/2 

and r ~ 2b/3, that is to say, when the impurity is in the core of the dislocation: 

 

  
 

An impurity located at a height y of the glide plane of a dislocation applies a force on it given by: 

 

  
 

Remark: 

 

Since the hydrostatic pressure linked to a perfect screw dislocation is zero in isotropic linear elasticity, 

this dislocation is not affected by the size effect of impurity with spherical symmetry. 

 

b) Tetragonal effect 

 

In reality, impurities (particularly interstitial 

impurities) cause an antisymmetric distortion and 

do not generally function as a simple expansion 

center. As a result, the elastic displacements do not 

have spherical symmetry but rather exhibit 

tetragonal symmetry (the case of carbon atoms in 

a solid solution in iron). In this case, the impurity 

also interacts with the shear stresses of the 

dislocation, leading to an additional energy term, 

which in this case, affects screw dislocations as 

well. 

 

 
Figure 8-17: Carbon atoms are located on octahedral sites.  

 

c) Modulus effect 

 

Because the elastic constants are higher or lower around the impurity than in the matrix, more or less 

elastic energy is stored in the stress field of the dislocation. All this corresponds to an attraction or 

repulsion by the impurity, according to the sign of the modulus effect. Although this effect is 

generally weaker than those mentioned previously, it can be important when there is a high elastic 

modulus variation (case of vacancies where ). Other effects exist, such as the electrostatic 

effect, dissociation, etc. 

 

To summarize very briefly: 
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Knowing the energy (or the force) of the interaction, we can calculate the stresses necessary to cross 

these obstacles, as we did previously in the case of interaction between dislocations, either by the 

stress only (T=0 K) or due to thermal activation (T≠0 K). 

 

 

8.5.2 Propagation of the dislocation through the distribution of point defects 

 

Here, the problem is to analyze the dislocation motion through the distribution of obstacles interacting 

with it with the previously studied interactions. In the absence of thermal activation, the 

parameters involved in the gliding of the dislocation are (Fleischer model): 

 

• the interaction force of the obstacle with the dislocation: Fc  

• the line tension (flexibility) of the dislocation: τ 

• the spatial distribution of the obstacles, represented by their mean distance in the glide plane of the 

dislocation: l 

What we are trying to find is critical stress.  

 

As in the case of the dislocation forest, the stress applied σ bends the dislocation between its obstacles 

with a radius of the curvature which - at equilibrium - is equal to: 

 

  
 

The dislocation then has an angle of aperture ψ on the obstacle, depending simultaneously on R and 

the distance D between the obstacles along the dislocation line (Figure 8-18). The force applied on 

the obstacle by the line tension is then: 

  
 

The obstacle is overcome when F=Fc, that is to say, when ψ=ψc (critical escape angle), that is: 

 

 

 

 

with  

 

 

The extremum values of β correspond respectively to: 

• β ≈ 0 or ψc ≈ π , weak obstacles, 

• β ≈ 2 or ψc ≈ 0, thus strong obstacles. 
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Figure 8-18: Geometry of the overcoming of an obstacle by a bent dislocation 

 

 

The distance D between obstacles along the dislocation line varies, and the angles for a given stress 

also vary. The dislocation can unpin from all obstacles for which ψ < ψc and impeded by others with 

ψ>ψc. 

 

Figure 8-19 shows the results obtained by numerical simulation by Foreman & Makin (Phil. Mag. 14 

(1966) 911). 

 

Their approach was the following: 

 

• a random configuration of points is chosen (stochastic generation), representing the distribution of 

impurities, 

• the critical angle ψc is chosen, that is to say, the force of the obstacles (assumed of equal strength), 

• we place a dislocation on the "starting line," 

• the external stress σ is increased (or R is decreased) by small incremental steps, and we measure ψ 

on each obstacle, 

• if ψ > ψc, the portion of dislocation is not moved because the external stress is not sufficient to cross 

the obstacle, 

• If, on the other hand, ψ < ψc, the portion of dislocation is displaced until the first obstacle for which 

ψ > ψc and subsequent interactions. 

The critical stress is then defined as the stress necessary for the dislocation to reach the other 

extremity of the distribution of obstacles. The results obtained from these simulations indicate that: 

 

• for weak obstacles (Figure 8-19 a): the dislocation sweeps through defects on the plane 

• for strong obstacles (Figure 8-19 b): the dislocation tends to widen in the least dense zones. 
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Figure 8-19: Shape of a dislocation crossing weak obstacles a) and substantial obstacles b)  

according to the numerical simulations by Foreman and Makin 

 

 

8.6 Interactions with moving impurities 
 

In the previous section, we described the interactions with impurities, assuming they are fixed. The 

dislocation encounters and has to overcome these pinning points to move. If the thermodynamic 

conditions allow it, the dislocation can also drag impurities. Such drag processes and conditions exist 

when the temperature is sufficient for the impurities to diffuse at a rate comparable to the dislocation 

glide velocity. 

 

The interaction of impurities with dislocations and 

dragging impurities generate deformation instabilities. 

The two typical cases are the Piobert-Lüders slip bands 

(PL) (static aging) and the instabilities of Portevin-Le 

Châtelier (PLC). These are observed macroscopically, 

the deformation being unstable and heterogeneous.  

 

The instability of Piobert-Lüders occurs around the 

elastic yield stress (Figure 8-20) and corresponds to: 

 

•  A low initial density of mobile dislocations, the 

existing dislocations being blocked by impurities 

diffusing to the core the dislocations, 

•  A catastrophic multiplication at the propagation 

front initiates in the zones where the stress 

concentration releases the dislocations from their traps.

Figure 8-20 : Strain curves in a Fe-C alloy. (a)  

Piobert-Lüders instabilities at the yield stress 

and (b) Portevin-Le Châtelier effect. The latter 

is characterized by an abrupt drop in the yield 

stress 
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8.6.1 Portevin - Le Châtelier effect (qualitative) 

 

Unlike the PL instability, the PLC effect only appears after a critical deformation and repeats during 

the deformation process (see the strain curve in Figure 8-20). 

 

This effect is due to dynamic aging characterized by two modes of dislocation velocity (Figure 8-21): 

 

• In mode I (low velocities), the dislocations are sufficiently slow and drag impurities, 

• In mode II (high velocities), the dislocations are much faster than the impurities, so these can be 

modeled as fixed obstacles for the dislocations. 

 

In between these two modes, the slope of the stress σ(v) as a function of the deformation speed is 

negative, which means that between the speeds v1 and v2, no stationary regime is possible for the 

dislocation. Thus, when the imposed deformation speed γ is such that the average dislocation velocity 

is either in regime I (<v1) or II (>v2), the deformation is, in principle, stable and homogeneous (Figure 

8-21). On the other hand, when γ corresponds to the average speed of the dislocations between modes 

I and II, the PLC phenomenon occurs. At onset, dislocations move at velocities <v1 in mode I, 

dragging their cloud of impurities (Figure 8-21). 

 

The dislocations' velocities are insufficient to sustain the imposed deformation speed γ. Therefore, 

the stress applied σ increases until it reaches a value σ1, where the dislocations are freed from their 

impurities cloud. The dislocations will then abruptly jump on branch II, where "fixed" impurities 

control their speed. In this mode, though, their speed is too high for the imposed deformation speed 

γ, and the stress decreases until σ2, at which the dislocations are again sufficiently slow to be trapped 

by impurities. They then fall back into mode I, and this mechanism continually repeats and can often 

be experimentally observed as serrations on the stress-strain curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8-21: Curve expressing the relation between stress and strain rate  

 

8.7 Interaction with precipitates 
 

By simple gliding, i.e., in the absence of climb of dislocations or cross-slip, a dislocation can cross a 

distribution of obstacles of finite size only in two ways: 

 

• by shear, if the precipitates are coherent with the matrix, 

• by Orowan's bypass mechanism in all other cases.
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8.7.1 Cutting of a precipitate 

 

Consider a coherent precipitate cut by a matrix 

dislocation (Figure 8-22). For the sake of generality, 

we also suppose that the shear of this precipitate by the 

dislocation creates an interface with surface energy γp 

(e.g., in the case of ordered alloy precipitates).  

 

The corresponding cutting mechanism requires the 

(Figure 8-22): 

 

• the creation of an interface matrix-precipitate with 

surface energy γp  

• the creation of an interface within the precipitate 

with surface energy γp  

Figure 8-22: Image of the Cutting of a precipitate  

         at the atomic scale 

 

Calculating the critical stress σc requires specific details of the dislocation process that cuts the 

precipitates and is relatively complex and not presented here. Instead, we  note the result obtained by 

Gleiter and Hornbogen (Phys. Stat. Sol 12 (1965) 535), who expressed the critical stress as the shear 

between a pair of dislocations: 

 

  
 

It is important to note that the critical stress increases as the square root of the diameter of the 

precipitates. 

 

 

8.7.2 Bypass mechanism 

 

The bypass mechanism is the only possibility for dislocations to cross slip and glide around 

incoherent and coherent precipitates with high interphase or anti-phase energy if they are ordered 

alloy compounds. It is also possible to bypass the precipitate by climb, but Chapter IX deals with this 

topic in detail. In this case, the stress necessary for the cutting mechanism is so high that the 

dislocation bends between the precipitates until a semi-circular critical position is reached, in which 

adjacent dislocation line segments with opposing burger's vectors are in close proximity and 

annihilate. As a result, the dislocation line bypasses the precipitate, leaving around the precipitate a 

residual loop (Figure 8-24). This case is then an analog to a Frank-Read source. 

 

For precipitates with planar mean radius in the glide plane r of the same size as the gap D (Figure 8-

23) along with the dislocation, we have: 

 

  

With 

(8.6) 

(8.7) 
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Figure 8-23: Bypass mechanism of precipitates and formation of loops 

 

 

If the radius of the precipitates is small with respect to the 

distance D between them, this becomes the critical 

parameter. The critical radius of curvature is D/2, thus: 

 

   
 

called the critical Orowan stress (D either being a function 

of σ or assumed independent). 

 

In the case of coherent precipitates, with constant volume 

fraction f, the radius r of the precipitates is proportional to 

D, the mean distance between the precipitates in the glide 

plane: 

   
 

We obtain then: 

 

   
 

 

 

 

 

8.7.3 Competition between the Bypass and Cutting mechanisms  

 

The critical stress σc for the bypass mechanism and the Cutting grows as 1/r and r1/2, respectively 

(formulas (8.6) and (8.9)). Thus, the crossing occurs for a constant volume fraction f and a given 

radius r when the lower critical stress mechanism reaches its threshold. 

(8.8) 

(8.9) 

Figure 8-24 : Overcoming of precipitates 

through bypass mechanism. The dislocation 

encircles the precipitate and leaves behind it a 

loop around the precipitate 
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Figure 8-25: Yield stress as a function of the radius of precipitates. Change from the Cutting to the bypass mechanism  

 

We can see that (Figure 8-25) at a constant volume fraction of precipitates f, in a structure with large 

precipitates (i.e., with significant gaps and large precipitates), dislocations glide via a bypass 

mechanism. In contrast, dislocations propagate by cutting precipitates in a structure with small 

precipitates (i.e., closer together). Generally, the critical radius rc separating the two behaviors 

depends slightly on f and corresponds to a hardening thermal treatment, which is material-specific 

and corresponds to the largest flow stress that this kind of precipitate can obtain. 

 

 

 

8.8 Interaction with the grain boundaries: Hall-Petch law 
 

In polycrystalline materials, the path of dislocations is also limited by the interfaces formed by grain 

boundaries. The experimental measures often show a dependency of the elastic yield stress on the 

size of the grains d: 

  
 

This behavior has been justified by Hall and Petch (E.O. Hall, Proc. Phys. Soc. B64, (1951) 747 and 

N. J. Petch, Phil. Mag. 3 (1958) 1089) by the piling up of dislocations at the grain boundaries. In this 

model, the stresses of the dislocations accumulated at the grain boundary must be sufficient to cause 

other sources in the adjacent grains. 

 

Considering a source S1 in the grain 1 (Figure 8-26) and a shear stress on the glide plane τ, we can 

show (Eshelby J. D., Frank F. C., Nabarro F. R. N. Phil. Mag., 42 (1951) 351) that the stress near 

the leading dislocation τ1 depends on the number of dislocations in the pile-up and on the shear stress 

applied: .

(8.10) 
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Figure 8-26: Diagram of the dislocations coming from a source S1 piling up at the joint between grains 1 and 2. The 

stresses due to the pile activate the source S2 

 

 

We use the expression of the repulsive force between two dislocations with the same sign (7.32) and 

consider a force balance at equilibrium. If n dislocations pile up on the same glide plane, for the nth 

to move (Figure 8-26), the stress applied must be: 

 

  
 

Since :  

 

  
 

If we assume that the source S2 in grain 2 has begun to operate when the stress at the boundary takes 

a critical value , then: 

 

  
 

with , where m is the Schmid factor. 

 

The Hall-Petch relation is obtained, assuming that the dislocations generated by S2 move under the 

action of a friction force σ0. One could notice that the distance among dislocations in the pile-up is 

proportional to the distance from the grain boundary, as represented in Figure 8-26. This is also 

observed experimentally. Figure 8-27 shows pile-ups of dislocations against a grain boundary in pure 

Cu using the etch pit analysis technique.  

 

 

 

 

(8.11) 

(8.12) 

(8.13) 
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Figure 8-26:  A) Diagram of the dislocation pile-up distance and B) image of Cu surface etch pitted to show their  

 

 

A) A) 
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